MgB₂ Hot Electron Bolometers for Array Receivers

Daniel Cunnane*1, Narendra Acharya2, Wenura K. Withanage2, Xiaoxing Xi2, Jonathan Kawamura1, and Boris S. Karasik1

> ¹Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA ²Temple University, Philadelphia, PA 19122, USA *Contact: daniel.p.cunnane@jpl.nasa.gov

Science Targets of Interest:

- HEB operation at elevated temperature which can be achieved by 20-25 K mechanical cryocoolers (in space)
- Achieving higher than in the state of the art NbN mixers IF bandwidth in order to enable spectroscopic measurements of highly Doppler broadened THz lines (up to 8-10 GHz is required).

2

Larger Bandwidth Needed at Higher Frequencies

 Using Herschel HIFI, a scan of GC at 1.9 THz had features spanning 450 km/sec.

•
$$\Delta f = \frac{\Delta v}{c} f_0$$

 A similar scan for the 4.7 THz OI line would require over 7 GHz to obtain the same velocity span.

Superconductivity in MgB₂

MgB₂ Potential for HEB Applications

Material	MgB ₂	NbN	MgO	SiC	Si
ρ (g cm ⁻³)	2.7	8.5	3.6	3.2	2.3
v _s (km/s)	7.8	2.5	6.6	7.5	6
Z _a (10 ⁶ kg m ⁻² s ⁻¹)	21	21	24	24	14

- Well acoustically matched to substrates of interest.
- 2-Temperature model predictions yield small effective τ which will result in a large intermediate frequency (IF) bandwidth.
- Additional benefit of variable resistivity for impedance matching.

Comparison to SOA at 4.7 THz

D	SOA NbN I	HEB mixer	Current MgB ₂	
Parameter	WG	QO	Current MgB ₂ QO HEB mixer	
DSB noise temp. (K)	1100	815	2300 @4.3 THz	
IF noise BW (GHz)	≈ 3	≈ 3	≈ 7	
Operating temp. (K)	4.6	4.2	15	
Array size	1 × 1	1 × 1	1 × 1	
LO type	QCL	QCL	far-IR laser	

WG) D. Büchel *et al.*, "4.7-THz Superconducting Hot Electron Bolometer Waveguide Mixer," *IEEE Trans. THz Sci. Technol.*, vol. 5, no. 2, pp. 207-214, 2015.

QO) J. L. Kloosterman *et al.*, "Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator," *Appl. Phys. Lett.*, vol. 102, p. 011123, 2013.

MgB₂ Quasi-Optical Mixers

MgB₂ Quasi-Optical Mixers

Goal: Waveguide Mixers

- Need to develop devices on SOI substrates with 3-6 µm device layer thickness.
- Need to show that backside alignment and etch of the handle wafer do not effect device performance.

HPCVD Grown MgB₂ Thin Films

CVD Boron Thin Films as a Buffer

- Obstacle: Reaction between Si and Mg around 450 C
- Solution: Intermediate Buffer layer
 - MgO was the first choice, but smooth MgO films cracked during higher temperature
 MgB₂ deposition
 - Boron films first used to grow MgB2 on Cu (same issue) for SRF applications.

Films on Si Substrate

- Poor Roughness of Boron films lead to poor roughness of MgB2 films.
- Very clean interfaces implies room for improvement.

HEB Devices on Si Substrate (DC characterization)

- 20 nm Film
- T_c corresponds with what was seen for Films
- ΔT_c is ~4 K, leading to poor sensitivity (expected problem is from film non-uniformity)
- J_c is a factor of 2 lower than bare films (6 MA/cm² compared to >10MA/cm² in films)

HEB Devices on Si Substrate (RF characterization)

- THz pumping of devices is easier than previous devices.
 - Device Tc is somewhat lower
 - Impedance matching is improved (low temp device resistance approx. 30 ohms)
- Gain bandwidth measurement done with microwave frequencies.
 - Bandwidth identical to device on SiC substrate with similer film thickness (6.5 GHz).

Optimization of Films and Growth on SOI

Ion milling at a very shallow angle can improve the roughness significantly (factor of 2-5). This was used to achieve ~3 nm films with Tc > 30 K.

Films can be grown on SOI substrates without any further degradation of the SC properties.

Summary:

- Consistently see an IF bandwidth around 7 GHz for a 15 nm film
 - Bandwidth confirmed even when moving to the polycrystalline films on Si Substrates.
- Noise temperature of MgB2 HEBs about 2x larger than SOA NbN devices
 - Still significant room for improvement, particularly with impedance matching
 - NT of MgB2 HEBs on Si Substrate needs further work, particularly, more uniform films to achieve smaller ΔTc .
 - Polycrystalline films on Si have larger sheet resistance which will make impedance matching easier.
- MgB2 films have been grown on SOI substrates and efforts are under way to fabricate some WG coupled HEBs for frequencies from 1.9 THz to 4.7 THz.